
WS Functional Automation
8.15 WSODBC

Purpose

With WSODBC, we can make ODBC connections with Liquid UI WS. This article
explains us how to use the ODBC functionality built into Liquid UI WS.

You can use the Liquid UI WS platform to access data and manipulate functions in
Microsoft SQL Server and other ODBC-compliant databases through the wsodbc
extension. WSODBC is a set of libraries that you can use to make ODBC connections
and perform SQL queries from within Liquid UI WS scripts. Currently, this
functionality is in use in the field by several of Synactive customers, most notably
Florida Crystals.

The WSODBC functionality is available for use with the following Synactive
solutions:

Server-based Implementation (Liquid UI Server)
Web-based Implementation (Web Server)
Local Implementation (Liquid UI for SAP GUI)

Through Liquid UI Server, the ODBC functionality can be used with Synactive's
Offline and Mobile solutions in addition to the local and Server-based
implementations already mentioned. This highlights one of the great strengths of
WS - you can write a single script and implement it with multiple touchpoints. With
WSODBC, you can use the exec() method of your database object to execute any
SQL commands that are supported by Microsoft SQL Server. Some of the most
common commands, which we will be demonstrating in our examples, are the
following.

Specify Databases
You can specify more than one database to connect to. However, you can
only connect to a single database at a time - simultaneous connections are
not currently possible.

Create Tables
You can use wsodbc to create new tables in SQL databases. In addition, you
can add rows to either the newly created tables or existing tables in the
database.

Retrieve Data
You can use SQL 'Select' statements to retrieve data from within SQL
databases. The data will be returned as a relational array, so once returned,
you can then perform operations upon it from with the WS script.

Update Databases
You can insert data into database tables with the wsodbc extension. In
addition, you can specify individual table within databases. You can also add
entries to database tables with wsodbc.

Delete Table Entries
You can use wsodbc to delete individual entries from a database table.

Drop Tables
You can use wsodbc to drop an entire table from a given database.Page 1 / 18

(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
The ODBC functionality is accomplished with an extension to the WS platform called
wsodbc. In this section, we will explain how to use the GuiXT WS to work with SQL
databases. The following topics will be covered:

System Requirements
Connection Parameters
Creating a database object
Creating, Retrieving, Updating and Deleting Data
Handling Returns

ODBC Requirements

The system requirements for running ODBC with Liquid UI WS is as follows:

The GuiXT WS engine must be installed in order to utilize the ODBC functionality. In
addition, you also need to install the following file:

wsodbc.dll: Contains the libraries for the SQL connection.

To install the wsodbc.dll, copy it to the correct directory. Please note that the above
file must be stored in the same folder as the GuiXT WS engine. These directories are
as follows.

Local Deployment (GuiXT WS Desktop or Liquid UI for SAP GUI)

For local GuiXT WS installations, please install the wsodbc.dll file to the
C:\Program Files\SAP\FrontEnd\SAPgui\ directory.

Server Deployments

For deployments involving GuiXT Server, please place the wsodbc.dll file in
the C:\Program Files\Synactive Inc\GuiXTServer\ directory.

Web Deployment

For deployments using Web Server, the wsodbc.dll file should go in the
C:\Program Files\Synactive Inc\GuiXTFuzion\ directory.

Connection Parameters

You must specify connection parameters before you can create a connection object
for wsodbc. Please follow the instructions below to set up connection parameters for
a connection object.

Page 2 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
1. Load the WSODBC libraries:

load('wsodbc.dll');

2. Create the object for the connection parameters:

var dbtest ={Driver={SQLNativeClient};server:'NAME',dbname:'TEST
,user:'test',pass:'test'};

These parameters are defined as follows:

Driver: The driver you will use. You must have the appropriate
driver for the version of the SQL server and for the database you will
be connecting to. Check your server and ensure that you have the
appropriate native SQL driver installed on the machine that will be
connecting to the SQL server. You can find additional information
about the drivers from Microsoft's MSDN Library.
server: The name of the database server to which you will be
connecting. This can be either the name of the server or the server's
IP address.
dbname: The name of the specific database to which you will be
connecting.
user: The name of the specific user who will be connecting to the
SQL server.
pass: The password of the specific user who will be connecting to
the SQL server.

Note: The connection parameters also can be passed to the connection
object from a variable.

3. Proceed to the Creating Connection Objects section.

Creating Connection Objects

This section describes how to create a connection object.

1. Load the wsodbc.dll as previously described if you have not already done it.
2. Create the connection parameters as previously described.
3. Create the connection object. This will establish a new ODBC connection

using the connection parameters you previously defined. An example is
shown below:

db = new Odbc(dbTest);

Page 3 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

http://msdn.microsoft.com/en-us/sqlserver/aa937733.aspx
ws_wsodbc3_conObj.html
https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
We recommend placing the connection object in a try-catch block so as to
ensure proper error handling. An example script is shown below.

function ODBCconnect(dbase)
{
 var sConnectTrusted = 'Driver={SQL Native Client};Server={'+db
ase.server+'};Database={'+dbase.dbname+'};'Trusted_Connection:Ye
s'
 var sConnectUser = 'Driver={SQL Native Client'};Server={'+dbas
e.server+'};Database={'+dbase.dbname+'};UID={+dbase.user+'};PWD=
{'+dbase.pass+'}';
 var sConnect = '';
 if(dbase.user) sConnect = sConnectUser;
 else sCOnnect = sConnectTrusted;
 println('Connecting with '+sConnect);
 try{
 db = new Odbc(sConnect);
 }
 catch(err){
 message("E: Error with database conectivity.");
 println("> error with DB:",err.description);
 return NULL;
 }
 println("
Connected to "+db.dbms+'. Server '+dbase.server+' Database '+dba
se.dbname);
 return db;
}

4. Follow the next section, Using SQL create statements:

Using SQL Create Statements

You can use the SQL CREATE statement in conjunction with wsodbc to perform
updates and additions to the database. To do this, you will typically use the
db.exec() function, with the SQL statement as an argument. An example of this is
shown below:

var arrObj = db.exec("SELECT * FROM TABLE");

Note: Only the SELECT statement will return values. The INSERT, DELETE, UPDATE,
and CREATE statements do not return any values. If you are returning values from
the database, we recommend that you use an array to hold them.

In the following example, we will use the CREATE statement to create a new table in
a SQL database.

Page 4 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
1. Create a new database with the following code:

db = new Obdc(<connection parameters>);

2. Create a new SQL query in a variable. An example is shown below:

sqlQuery = "if not exists (select * from sysobjects where name=
'user' and xtype='U')" +
"CREATE TABLE[dbo].[USER](" + "[RECID][varchar](15)NOT NULL," +
"[USERNAME][varchar](12)NOT NULL," +
"[PASSWORD][varchar](40)NOT NULL," + "[CLIENT][varchar](3)NOT NU
LL," + "[LANG][varchar](2)NULL," +
"[CREATE_DATA][date]NOT NULL," + "[MODIFIED_DATE][date]NULL," +
"[CREATED_BY][varchar](10)NOT NULL," +
"[MODIFIED_BY][varchar](10)NULL," + "[LOCKED][varchar](1)NULL,"
+ "[FIRST_LOGIN][varchar](1)NULL," +
"[PLANT][varchar](4)NOT NULL," + ")

Synactive recommends always using the if not exists(select * from
sysobjects where name='user' and xtype='U'); statement when creating
tables. This will verify that the table 'user' exists in the specified database. If
the 'user' table does not exist, it will be created. We also recommend
handling the record IDs, the session information, modification information
and messages for each table.

3. Use the db.exec() function to execute the SQL query as shown below:

db.exec(sqlQuery);

4. To add an entry to the table, create a new query to use in the db.exec()
function. An example is shown below:

sqlQuery = "if not exists(select * from [dbo].[USER] where usern
ame = 'admin')
insert [dbo].[USER] values ('"+ system.newRecId('$S1')+ "','admi
n','adminpass','100','EN','10/12/2012','',
'system','','','X','1000','1000')"

5. Use the db.exec() function to execute the SQL query as shown below:

db.exec(sqlQuery);

The 'if not exists' statement will verify that the user 'admin' exists. If the
user does not exist, the new entry will be added to the table.

Page 5 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
sqlQuery = "if not exists (select * from [dbo].[USER] WHERE USER
NAME = 'admin') insert [dbo].[USER] VALUES (?,?,?,?,?,?,?,?,?,?,
?,?,?)"
 db.exec(sqlQuery,arrSQLQUERY);

6. Because the values are hard-coded in the example above, there is a
possibility that the RecID may return a value with a quote. This would break
the sequence and generate an incorrect result. To avoid this possibility, you
should use an array as shown below:

var arrSQLQUERY = [];
arrSQLQUERY = [system.newRecId('$S1'),'admin','adminpass','100',
'EN','10/12/2012','',
'system','','','X','1000','1000'];

7. Your SQL query will appear as shown below:

sqlQuery = "if not exists (select * from [dbo].[USER] WHERE USER
NAME = 'admin') insert [dbo].[USER] VALUES (?,?,?,?,?,?,?,?,?,?,
?,?,?)"

8. Use the db.exec() function to execute your SQL query as shown below:

db.exec(sqlQuery,arrSQLQUERY);

Deleting a Connection

To delete a previously created database connection, please do the following.

1. Add the following code to your script.

db = NULL

2. The connection contained in the variable 'db' is now destroyed.

Retrieving Data

To retrieve data from a database, you will use the SQL SELECT statement in your sql
query. As this statement will return values, you must have code to handle the
values returned. To perform a retrieve operation, you can use the db.exec() function
that we previously introduced, or you can use the db.select() function. Both will
return data when used with a SELECT statement. We will demonstrate this in the
following examples.

1. To use a db.exec() statement, create the SQL query as a variable as in the
following example:

Page 6 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
sqlQuery = "select * from [db0].[USER]";

2. Create the variable as shown below:

var record = db.select(sqlQuery);

3. Execute the query and then access the values returned. In this example, we
will

var vUser = record[0].USER
var vClient = record[0].CLIENT

Note: The values returned from a database by a SELECT statement will be
in the form of a dimensional array. You can include loops to get each column
and row element in the table. We also recommend using try-catch blocks to
handle any errors that may occur.

Updating Database Tables

To retrieve data from a database, you will use the SQL SELECT statement in your sql
query. As this statement will return values, you must have code to handle the
values returned. To perform a retrieve operation, you can use the db.exec() function
that we previously introduced, or you can use the db.select() function. Both will
return data when used with a SELECT statement. We will demonstrate this in the
following examples.

1. To use a db.exec() statement, create the SQL query as a variable as in the
following example:

sqlQuery = "select * from [db0].[USER]";

2. Create the variable as shown below:

var record = db.select(sqlQuery);

3. Execute the query and then access the values returned. In this example, we
will

var vUser = record[0].USER
var vClient = record[0].CLIENT

Note: The values returned from a database by a SELECT statement will be
in the form of a dimensional array. You can include loops to get each column
and row element in the table. We also recommend using try-catch blocks to
handle any errors that may occur.

Page 7 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
Deleting a Record

To retrieve data from a database, you will use the SQL SELECT statement in your sql
query. As this statement will return values, you must have code to handle the
values returned. To perform a retrieve operation, you can use the db.exec() function
that we previously introduced, or you can use the db.select() function. Both will
return data when used with a SELECT statement. We will demonstrate this in the
following examples.

1. To use a db.exec() statement, create the SQL query as a variable as in the
following example:

sqlQuery = "select * from [db0].[USER]";

2. Create the variable as shown below:

var record = db.select(sqlQuery);

3. Execute the query and then access the values returned. In this example, we
will

var vUser = record[0].USER
var vClient = record[0].CLIENT

Note: The values returned from a database by a SELECT statement will be
in the form of a dimensional array. You can include loops to get each column
and row element in the table. We also recommend using try-catch blocks to
handle any errors that may occur.

WSODBC Example

The following examples demostrate the usage of WSODBC in a WS script.

dbo.sjs

This file contains the global variables and the main functions of the ODBC
operation. The included functions are as follows.

ODBCconnect(dbase)
opendb()
closedb()
userTable(dbase)

Page 8 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
dbTableCreate()

Example: dbo.sjs

Explanation of the dbo.sjs file in the WSODBC example.

The dbo.sjs file contains the global variables and the main functions of the
ODBC operation. THe connection parameters are also included as they are
global as well. The included sections are as follows:

Connection Parameters
ODBCconnect(dbase)
opendb()
closedb()
userTable(dbase)

Connection Parameters

The first section of the dbo.sjs file contains the connection parameters for
the ODBC operation. Any global variables used for the operation also can be
stored in this section. The connection parameters are as follows.

var db1 ={server:'TEST1',dbname:'NOTIFICATION',user:'user1',pass
:'password'};
var db2 ={server:'TEST2',dbname:'WORKORDER',user:'user2',pass:'p
assword1'};
var db3 ={server:'TEST3',dbname:'USER',user:'user3',pass:'passwo
rd2'};

Below the variable for determining the database resides an IF statement.
This creates the 'ODBCCon' object that holds the ODBC connection
parameters and it also performs the database open and table create
operations. The code is as follows.

if(LOAD_ONCE){
if(!ODBCCon)
ODBCCon = ODBCconnect(dbtest);
if(ODBCCon)
 dbTableCreate();
else
 println("Failed DB Table Create Block");
LOAD_ONCE--;
}
var SESSIONID;

Page 9 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
ODBCconnect(dbase)

The ODBCconnect function passes the database name as a parameter and
then it calls the database open function. This function also will query to
ensure that the requested database actually exists. Finally, it includes code
to handle any errors that might occur during these operations. The code is
shown below.

 function ODBCconnect(dbase)
{
 var dbtest ={server:'TEST2',dbname:'WORKORDER',user:'user2',pa
ss:'password1'};

 try{
 db = new Odbc(dbtest);
 }
 catch(err){
 message("E: " +err.description);
 }
}

opendb()

This function is the one that actually opens a connection to whatever
database you specify in the connection parameters. This function is called
by the ODBCConnect function introduced above. The code is as follows.

function opendb() {
 println(">>1 that.ODBCCon",that.ODBCCon);
 if(!that.ODBCCon) {
 println('Opening session database...');
 that.ODBCCon = ODBCconnect(dbConnectTo);
 println(">>2 DB connected to",that.ODBCCon);
 }
 println(">>3 that.ODBCCon",that.ODBCCon);
 return that.ODBCCon;
}

closedb()

The closedb function is the counterpart to the opendb function introduced
Page 10 / 18

(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
above. This function will close the connection to the database once all
operations are complete. The code is shown below.

function closedb() {
 /* \/ \/ \/ \/ \/ \/ \/ */
 if(that.ODBCCon) {
 that.ODBCCon = null;
 delete that.ODBCCon;
 }

 // this.name is set by newSession
 print('Connection closed\n');
 enter('/nex')
}

userTable(dbase)

The userTable function performs the following operations on the database:

Checks to ensure that the user table exists.
If the user table does not exist, the function will create the user
table.
If the user table exists, the function will query for the user 'admin'.
If the user table does not exist, then there can be no 'admin' user, so
the function will create the table and then will insert the 'admin'
user.

The code is shown below.

function userTable(dbase){
 sqlQuery = "if not exists (select * from sysobjects where name
='user' and xtype='U')" +
"CREATE TABLE[dbo].[USER](" + "[RECID][varchar](15)NOT NULL," +
"[USERNAME][varchar](12)NOT NULL," +
"[PASSWORD][varchar](40)NOT NULL," + "[CLIENT][varchar](3)NOT NU
LL," + "[LANG][varchar](2)NULL," +
"[CREATE_DATA][date]NOT NULL," + "[MODIFIED_DATE][date]NULL," +
"[CREATED_BY][varchar](10)NOT NULL," +
"[MODIFIED_BY][varchar](10)NULL," + "[LOCKED][varchar](1)NULL,"
+ "[FIRST_LOGIN][varchar](1)NULL," +
"[PLANT][varchar](4)NOT NULL," + "
 dbase.exec(sqlQuery);
sqlQuery = "if not exists(select * from [dbo].[USER] where usern
ame = 'admin')
insert [dbo].[USER] values ('"+ system.newRecId('$S1')+ "','admi

Page 11 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
n','adminpass','100','EN','10/12/2012','',
'system','','','X','1000','1000')"
}

FUNCTIONS_ELOGON.sjs

This script file contains the functional scripts for the ODBC operation. These
functions will be called from the main script. The functions contained within
are, listed below.

set_device(param)
checkUser()
changeLayout()
addUser()
changePassword()
searchUser()
modifyUser()
lockUserToggle(param)
resetPassword()

The FUNCTIONS_ELOGON.sjs file contains the the operational functions of the ODBC
operation. The connection parameters are also included as they are global as well.
The included sections are as follows:

checkUser()
addUser()
changePassword()
searchUser()
modifyUser()
lockUserToggle(param)
resetPassword()

checkUser()

This function gets all users from the master and then imports them into the
XLOGON table. The code is shown below.

function checkUser(){
 db = that.ODBCCon;
 if(!isBlank(USERNAME)){
 //Check if the user exists
 sqlQuery = "SELECT * from [dbo].["+objUserTable.name+"] WHERE "+objU

Page 12 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
serTable.cols.user+" = '"+ USERNAME +"'";
 println("------------>sqlQuery:",sqlQuery);
 record = db.select(sqlQuery);
 println("------------> ",record);
 if (record.length == 0){
 return("E: Username does not exist");
 } else if(record.length == 1){
 //if(record[0][objUserTable.cols.client] != CLIENT)
 // return("Client does not match");
 //if(record[0][objUserTable.cols.user] != USERNAME)
 // return("E: Username does not exist");
 if(record[0][objUserTable.cols.password] != PASSWORD)
 return("E: Password does not match");
 if(record[0][objUserTable.cols.lock] == 'X')
 return("E: User is locked");
 if(record[0][objUserTable.cols.firstlogin] == 'X'){
 changeLayout("NEW_PASSWORD");
 return("Enter New password");
 }
 else{
 if(record[0][objUserTable.cols.user]=='admin'){
 changeLayout("ADMIN_PANEL");
 } else if (record[0][objUserTable.cols.manager]=='X'){
 changeLayout("MANAGER_PANEL");
 WHSE = record[0][objUserTable.cols.warehouse];
 } else {
 changeLayout("PLATFORM");
 PLANT = record[0][objUserTable.cols.plant];
 WHSE = record[0][objUserTable.cols.warehouse];
 }
 }

 PASSWORD=Crypto.Encrypt(PASSWORD);
 println("---> " + USER + " authenticated.. Logging in");
 SESSIONID = (new session()).id;
 println(">",SESSIONID);
 sqlQuery = "insert [dbo].["+objSessionTable.name+"] VALUES ('"+USER
NAME+"','"+SESSIONID+"')";
 println(sqlQuery);
 db.exec(sqlQuery);
 }
 else{
 return("E: User does not exist");
 }
 }
 else
 message("E: Fill in all required entry fields");
}

Page 13 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation

addUser()

This function adds a user to a specified database. It wil also return error mesages if
the requirement are not met, such as the password being an incorrect length. The
code is as follows.

function addUser(){
 if(isBlank(zuser) || isBlank(zpass) || isBlank(zpassconfirm)) {
 println("---> Error :");
 return("E: Fill in all required details");
 }
 if(isBlank(zclient) || isBlank(zplant) || isBlank(zwhse)){
 println("---> Error :");
 return("E: Fill in all required details");
 }

 println("--->",zpass);
 println("--->",zpassconfirm);

 if(zpass.toString().trim()!=zpassconfirm.toString().trim()){
 zpass ='';
 zpassconfirm = '';
 return("E: Password does not match");
 }

 if(zpass.length < 6) return("E: Password is not long enough (Minimum
length: 6 characters)");
 db = that.ODBCCon;
 record = db.select("select * from [dbo].["+objUserTable.name+"] WHERE
 "+objUserTable.cols.user+" = '"+zuser+"' AND "+objUserTable.cols.clie
nt+"='"+zclient+"'");
 /*if (record.length == 0)
 return("E: Username does not exists");
 else */
 if (record.length > 1)
 return("
E: Error with the database! Multiple user for the same client.");
 sqlQuery = "insert [dbo].["+objUserTable.name+"] VALUES ('"+ system.n
ewRecId('$S1')+ "','"+ zuser + "','"+zpass +"','"+ zclient+"','EN',CON
VERT (datetime, GETDATE()),'','"+USERNAME+"','','','X','"+ zplant+"','
"+ zwhse+"','')";
 t = db.exec(sqlQuery);
 println("------> t: ",t);
 //set("V[z*]","");
 changeLayout("ADMIN_PANEL");
 return("S: User "+zuser+" successfully created in Client "+zclient);

Page 14 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
}

changePassword()

This function will change a user's password. This incorporates the ability to encrypt
the password, using our encrypt method. The code is shown below.

function changePassword(){
 if(newPass.toString().trim()!=confirmPass.toString().trim()){
 newPass ='';
 confirmPass = '';
 return("E: Password does not match");
 }
 newPass=newPass.toString().trim();
 if(newPass.length < 6) return("
E: Password is not long enough (Minimum length: 6 characters)");
 db = that.ODBCCon;
 var sqlQuery = "UPDATE [dbo].["+objUserTable.name+"] SET ["+objUserTa
ble.cols.rec+"]='"+system.newRecId('$S1')+"',["+objUserTable.cols.pass
word+"] = '"+Crypto.Encrypt(newPass)+"', ["+objUserTable.cols.firstlog
in+"] = '', ["+objUserTable.cols.modifiedOn+"]=CONVERT (datetime, GETD
ATE()),["+objUserTable.cols.modifiedBy+"]='"+USERNAME+"' WHERE "+objUs
erTable.cols.user+" = '" + USERNAME+"'";
 println(sqlQuery);
 t = db.exec(sqlQuery);
 println("------> t: ",t);
 PASSWORD = Crypto.Encrypt(newPass);
 set("V[z*]","");
 changeLayout("PLATFORM");
 return("S: Password changed successfully");
}

searchUser()

This function will search for a given user in the database and will return a message
if the user cannot be found. The code is in the following example.

function searchUser(param){
 if(isBlank(zclient.toString().trim()) || isBlank(zuser.toString().tri
m()))
 return("E: Fill in all the required fields");

Page 15 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
 db = that.ODBCCon;
 record = db.select("select * from [dbo].["+objUserTable.name+"] WHERE
 "+objUserTable.cols.user+" = '"+zuser+"' AND "+objUserTable.cols.clie
nt+" = '"+zclient+"'");
 if(record.length == 1){
 zplant = record[0][objUserTable.cols.plant];
 zwhse = record[0][objUserTable.cols.warehouse];
 zlocked = record[0][objUserTable.cols.lock];
 changeLayout(param.screen);
 }
 else if (record.length == 0)
 return("E: Username does not exists");
 else if (record.length > 1)
 return("
E: Error with the database! Multiple user for the same client.");
 else
 return("E: Error code 0x01");
}

modifyUser()

This function will modify an entry for a user, in case you wish to change information
such as the plant where he or she is affiliated. The code is shown below.

function modifyUser(){
 if(isBlank(zplant.toString().trim()) || isBlank(zwhse.toString().trim
()))
 return("E: Fill in all the required fields");

 db = that.ODBCCon;
 var sqlQuery = "update [dbo].["+objUserTable.name+"] SET ["+objUserTa
ble.cols.plant+"] = '"+zplant+"', ["+objUserTable.cols.warehouse+"] ='
"+zwhse+"' WHERE "+objUserTable.cols.user+" = '" + zuser+"' AND "+objU
serTable.cols.client+" = '"+zclient+"'";
 t = db.exec(sqlQuery);
 println("------> t: ",t);
 set("V[z*]","");
 changeLayout("MODIFY_USER");
 return("S: User data saved successfully");
}

lockUserToggle(param)

Page 16 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
This function will prevent a specified user from logging into the database. The code
is as follows.

function lockUserToggle(param){
 db = that.ODBCCon;
 var sqlQuery = "update [dbo].["+objUserTable.name+"] SET ["+objUserTa
ble.cols.lock+"] = '"+param.mode+"' WHERE "+objUserTable.cols.user+" =
 '" + zuser+"' AND "+objUserTable.cols.client+" = '"+zclient+"'";
 t = db.exec(sqlQuery);
 if(zlocked == "X"){
 zlocked= " ";
 return("S: User has been unlocked");
 }
 else{
 zlocked= "X";
 return("S: User has been locked");
 }
}

resetPassword()

This function resets a user's password if he or she forgets it. Error handling is also
included in case the reset operation does not succeed. The code is shown below.

function resetPassword(){
 if(newPass.toString().trim()!=confirmPass.toString().trim()){
 newPass ='';
 confirmPass = '';
 return("E: Password does not match");
 }
 newPass=newPass.toString().trim();
 if(newPass.length < 6) return("E: Password is not long enough (Minimu
m length: 6 characters)");

 db = that.ODBCCon;
 var sqlQuery = "update [dbo].["+objUserTable.name+"] SET ["+objUserTa
ble.cols.password+"] = '"+newPass+"', ["+objUserTable.cols.firstlogin+
"] = '', ["+objUserTable.cols.modifiedOn+"]=CONVERT (datetime, GETDATE
()),["+objUserTable.cols.modifiedBy+"]='"+USERNAME+"' WHERE "+objUserT
able.cols.user+" = '" + zuser+"'"
 println(sqlQuery);
 try{
 t = db.exec(sqlQuery);
 }
 catch(err){
 message(err.description);

Page 17 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

WS Functional Automation
 }
 println("------> t: ",t);
 //set("V[z*]","");
 set("V[newPass]","");
 set('V[confirmPass]','');
 changeLayout("MODIFY_USER_DETAIL");
 return("S: Password changed successfully");
}

Unique solution ID: #1102
Author: Punil Shah
Last update: 2019-09-25 12:12

Powered by TCPDF (www.tcpdf.org)

Page 18 / 18
(c) 2024 Liquid UI | Synactive | GuiXT <dev@guixt.com> | 2024-12-22 10:24
URL: https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

http://www.tcpdf.org
https://www.guixt.com/knowledge_base/content/139/103/en/815-wsodbc.html

